Introduction to the Binary and Analog Wizards

An easy way to create custom inputs for KMC BACnet controllers is to use the Binary or Analog Input Wizard. The wizards work with all KMC BACnet controller models.

NOTE: The Building Controller (also) has an analogous analog input table wizard in its web interface. See the Creating Custom Tables section in the BAC-A1616BAC BACnet Building Controller Application Guide and the Tables section in the BAC-A1616BAC BACnet Building Controller Installation and Operation Guide for more information.

NOTE: WinControl has an option to make custom tables for KMDigital controllers. See the WinControl Help system for more information.
NOTE: Default controller input types and tables already conveniently cover a large number of sensor applications. Creating custom inputs is necessary in relatively few cases.

NOTE: To use the custom input, be sure to select the correct applicable hardware input termination jumper or switch position on the controller. (See the relevant controller documentation.) For Conquest controllers, the termination is automatically set by the Device Type and Termination selections in the wizard. For older controllers, a jumper or switch must be checked and physically moved as necessary.

To open the wizard in KMC Connect, TotalControl, or KMC Workbench for Niagara:

1. Right-click the desired input object.
2. Select **Analog Input Wizard** or **Binary Input Wizard**, depending on the type of input.

The Binary Input Wizard, duplicates the configuration function in the standard configuration screens, but it makes the relationship between Polarity, Active/Inactive Text, and Present Value more intuitive and self-explanatory.
NOTE: The rest of this application guide is devoted to the Analog Input Wizard.

In the Analog Input Wizard, the Input Span and Output Span are used with linear inputs, such as 0–5 VDC, 4–20 mA, or 0–10K potentiometer. See Custom Analog Linear Inputs on page 4.

The Input Table is generally used for special non-linear inputs such as thermistors or RTDs. See Custom Analog Inputs with Tables on page 10.

NOTE: For all the applications shown in this document to work properly, software versions need to be KMC Connect ver. 1.0.4.2 or later, TotalControl ver. 4.0.0.17 or later, and KMC Workbench ver. 4.1.1.4 or later for Niagara N4 or ver. 3.8.1.9 or later for Niagara AX.
Custom Analog Linear Inputs

Understanding the Math

For linear inputs, knowing the calculations that occur behind the scenes is helpful for understanding offsets and multipliers. For linear inputs, the input wizard uses linear equation calculations. A linear equation (or the equation of any straight line) can be written as \(y = mx + b \), where \(m \) is the slope of the line and \(b \) is the y intercept. The y intercept of this line is the value of \(y \) at the point where the line crosses the y axis. See the graphs on the following pages for examples.

A simple example is shown below with a slope (multiplier) of 0.5 and a y intercept (offset) of 0.

In the next graph, From is changed (from 0) to 10 and Low is changed (from 0) to 25. The y intercept drops below the x axis to –3.33.
NOTE: In the two previous examples, the x and y axes have the same scale to demonstrate the actual slope. In the examples that follow with actual devices, the x and y axes are not to scale.

NOTE: Temperature conversion between Celsius and Fahrenheit scales is also a linear equation. F = \(\frac{9}{5} \times C + 32 \), with 32 as the offset and \(\frac{9}{5} \) as the multiplier.

NOTE: For more explanation of the formula, see https://www.mathsisfun.com/equation_of_line.html. For an interactive graph that demonstrates the relationship between m and b with y, see https://www.mathsisfun.com/data/straight_line_graph.html.
To configure a 0–5 VDC humidity transmitter for 0–100% humidity using the input wizard:

1. Set **Device Type** to **CUSTOM**.
2. Set **Termination** to **0–12 Volts**.
3. Set **Units** to **Percent**.
4. Under **Input Span**, set **Low** to **0 Volts** and **High** to **5 Volts**.
5. Under **Output Span**, set **From** to **0 Percent** and **To** to **100 Percent**.
6. Under **Input Table**, select **None** if it isn’t already selected.
7. Click **Save** and then **Close**.

THE-1002 Duct-Mounted Humidity Transmitter (w/ Temp. Sensor)

NOTE: This is used as an example. An even easier method for this particular configuration is to simply select **Humidity (0–100% 0–5 V)** in Device Type.

NOTE: Offset and Multiplier are **calculated automatically** from the Input Span and Output Span values. These correspond to the "math" graphs where Offset = b (y intercept) and Multiplier = m (slope).

NOTE: Controller Offset/Multiplier cannot be changed by the user. Depending on the Termination setting, an additional multiplier may be needed to compensate for the voltage divider across the controller’s input (in the controller’s internal circuitry).

NOTE: Input termination on Conquest controllers can be configured through software, but termination on older controllers must be configured through a jumper or switch.

Mathematical Representation

\[
\begin{align*}
\text{y} &= \text{mx} + \text{b} \\
\text{m} &= \frac{\text{To} - \text{From}}{\text{High} - \text{Low}} = \frac{100 - 0}{5 - 0} = 20 \\
\text{b} &= \text{From} - (\text{m} \times \text{Low}) = 0 - (20 \times 0) = 0
\end{align*}
\]

NOTE: Axes are NOT to the same scale.
To configure a 4–20 mA CO₂ transmitter for 0–2000 ppm using the input wizard:

1. Set **Device Type** to **CUSTOM**.
2. Set **Termination** to **4 to 20 mA**.
3. Set **Units** to **Parts per Million**.
4. Under **Input Span**, set **Low** to 4 mA and **High** to 20 mA.
5. Under **Output Span**, set **From** to 0 Parts per Million and **To** to 2000 Parts per Million.
6. Under **Input Table**, select **None** if it isn’t already selected.
7. Click **Save** and then **Close**.

NOTE: This is used as an example. An even easier method for this particular configuration is to simply select **CO2 (0–2000 PPM 4–20 mA)** in Device Type.

NOTE: Offset and Multiplier are calculated automatically from the Input Span and Output Span values. These correspond to the “math” graphs where Offset = b (y intercept) and Multiplier = m (slope).

NOTE: Controller Offset/Multiplier cannot be changed by the user. Depending on the Termination setting, an additional multiplier may be needed to compensate for the voltage divider across the controller’s input (in the controller’s internal circuitry).

NOTE: KMC Conquest controllers, the BAC-A1616BC Building Controller, and the KMD-5220 (input module for the LAN Controller) can natively read a 4–20 mA signal on their input terminals (with an internal resistor after proper configuration via a jumper or software). Older KMC controllers require an external 250 ohm (or more readily available 249 ohm) resistor wired across the input and ground terminals. The (internal or external) resistor converts the mA signal into a voltage signal that the controller can recognize. The controller’s physical input is then set (via jumpers or switches) for an active voltage sensor, and software configures the internal functioning for 4-20 mA. See the 4–20 mA Wiring for Controllers Application Guide (AG150421) for more information.

4–20 mA Transmitter

![Image of CO₂ Transmitters](https://via.placeholder.com/150)

NOTE: For a 4–20 mA input, controllers read voltage across a resistor across the input. In this Conquest controller example, the internal resistor is 151 ohms and voltage = current * resistance.

\[
\begin{align*}
\text{m} & = \frac{\text{To} - \text{From}}{\text{High} - \text{Low}} = 2.416 \\
& = 827.8 \\
\text{b} & = \text{From} - (\text{m} \times \text{Low}) = 0 - (827.8 \times 0.604) = -500
\end{align*}
\]

\[
\begin{align*}
\text{y} & = \text{mx} + \text{b} \\
\text{(NOTE: Axes are NOT to the same scale.)}
\end{align*}
\]
STE-6014/6017/6018/6019 temperature sensors with rotary dial (potentiometer) setpoints had a printed range of 55–90 °F or equivalent in °C before 2008. In 2008, the printed numeric °F or °C range on the case was replaced with warmer (sun) and cooler (snowflake) icons. This change allows for a custom setpoint range of nearly any value. To configure a 10K potentiometer for a 65 to 75° setpoint (for an example range on a BAC-A1616BAC Building Controller) using the input wizard:

1. Set **Device Type** to **CUSTOM**.
2. Set **Termination** to **MANUAL: 10K Ohm Pullup**. (Physically place the jumper in the 10K Pull-up position if it is not already positioned there.)
3. Set **Units** to **Degrees F**.
4. Under **Input Span**, set **Low** to 0 Kilohms and **High** to 10 Kilohms.
5. Under **Output Span**, set **From** to 65 Degrees F and **To** to 75 Degrees F.
6. Under **Input Table**, select **None** if it isn’t already selected.
7. Click **Save** and then **Close**.

NOTE: Input termination on Conquest controllers can be configured through software, but termination on older controllers must be configured through a jumper or switch.

NOTE: Controllers read the **voltage** across the appropriate termination on their inputs. A potentiometer at 0 ohms (with the potentiometer turned all the way in one direction) produces 0 VDC voltage drop across the 10K ohm pull-up resistor termination of a BAC-A1616BAC Building Controller input. With the potentiometer turned all the way the other direction, 10K ohms produces 1.5 VDC across the BAC-A1616BAC’s pull-up resistor. (Other controllers may have different voltage values for a corresponding resistance.)

NOTE: The default range of the offset in Conquest controllers is plus or minus 3° F. This means that, with the STE-6014/6017, users can adjust the scheduled setpoint by a maximum of three degrees up or down. To change the range, follow the equivalent of the steps above.

0–10K Ohm Potentiometer

ST-6014 Temperature Sensor with Setpoint

NOTE: Controllers read the voltage across the appropriate termination on their inputs. A potentiometer at 0 ohms (with the potentiometer turned all the way in one direction) produces 0 VDC voltage drop across the 10K ohm pull-up resistor termination of a BAC-A1616BAC Building Controller input. With the potentiometer turned all the way the other direction, 10K ohms produces 1.5 VDC across the BAC-A1616BAC’s pull-up resistor. (Other controllers may have different voltage values for a corresponding resistance.)

NOTE: The default range of the offset in Conquest controllers is plus or minus 3° F. This means that, with the STE-6014/6017, users can adjust the scheduled setpoint by a maximum of three degrees up or down. To change the range, follow the equivalent of the steps above.
NOTE: Offset and Multiplier are **calculated automatically** from the Input Span and Output Span values. These correspond to the “math” graphs where Offset = b (y intercept) and Multiplier = m (slope).

NOTE: **Controller** Offset/Multiplier cannot be changed by the user. Depending on the Termination setting, an additional multiplier may be needed to compensate for the voltage divider across the controller’s input (in the controller’s internal circuitry).

\[
m = \frac{\text{To} - \text{From}}{\text{High} - \text{Low}} = \frac{10}{1.5} = 6.7
\]

\[
b = \text{From} - (m \times \text{Low}) = 65 - (6.7 \times 0) = 65
\]

\[
y = mx + b
\]

(NOTE: Axes are NOT to the same scale.)
Custom Analog Inputs with Tables

Default controller input types and tables already conveniently cover a large number of sensor applications. But custom tables can be created in Microsoft Excel or equivalent software, saved as CSV (Comma Separated Values) files, and imported into the wizard. To create an input table, fill in 128 values and save the file as a CSV (Comma Delimited *.csv) file type.

NOTE: The input table import function imports the first 128 values from the CSV file even if there are more values in the file. Input tables must have 128 values even if many of them are 0. All indexes in all tables must have values, which default to 0. Values should be in a column (not a row).
To use a custom CSV table in the wizard:

1. In Device Type, select an unused table.
2. In the Input Table section, click the Import Table button.
3. Click Browse and select the desired file.
4. Click OK.
5. Click Save.
6. Click Close.
Handling Precautions

For digital and electronic sensors, thermostats, and controllers, take reasonable precautions to prevent electrostatic discharges to the devices when installing, servicing, or operating them. Discharge accumulated static electricity by touching one's hand to a securely grounded object before working with each device.

Important Notices

KMC Controls® and NetSensor® are all registered trademarks of KMC Controls. KMC Conquest™, KMC Connect™, KMC Converge™, and TotalControl™ are all trademarks of KMC Controls. All other products or name brands mentioned are trademarks of their respective companies or organizations.

All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form by any means without the written permission of KMC Controls, Inc.

The material in this document is for information purposes only. The contents and the product it describes are subject to change without notice. KMC Controls, Inc. makes no representations or warranties with respect to this document. In no event shall KMC Controls, Inc. be liable for any damages, direct or incidental, arising out of or related to the use of this document.

Specifications and design are subject to change without notice.

Support

Additional resources for installation, configuration, application, operation, programming, upgrading and much more are available on the KMC Controls web site (www.kmccontrols.com). To see all available files, log-in to the KMC Partner site.

For video tutorials on Conquest and Connect, see also the videos on KMC's YouTube channel.
Index

Symbols
0–5 VDC Transmitter 6
0–10K Ohm Potentiometer 8
4–20 mA Transmitter 7

A
Analog Wizard 1

B
Binary Wizard 1

C
Calculations 4
CSV (Comma Separated Values) 10

E
ESD (Electrostatic Static Discharge) 12

H
Handling Precautions 12

I
Important Notices 12
Intercept 4

L
Linear Equation 4

M
Multiplier 4

N
Notices 12

O
Offset 4

P
Potentiometer 8

R
Room Sensor. See Sensors

S
SAE-1011/1012/1062 Transmitters 7
Sensors 3, 8
Slope 4
Software Requirements 3
STE-6014/6017/6018/6019 Temperature Sensors 8
Support 12

T
Tables 10
Temperature conversion 5
THE-1002 Transmitter 6
Transmitter 6, 7

V
Version Requirements 3

© 2019 KMC Controls, Inc.